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Abstract

We study equilibria of a dynamic matching and bargaining game (DMBG) with
two-sided private information bilateral bargaining. The model is a private informa-
tion replica of Mortensen and Wright (2002). There are two kinds of frictions: time
discounting and explicit search costs. A simple necessary and su�cient condition on
parameters for existence of a non-trivial equilibrium is obtained. This condition is the
same regardless whether the information is private or not. In addition, it is shown
that when the discount rate is su�ciently small, the equilibrium is unique and has the
property that every meeting results in trade.

Keywords: Matching and Bargaining, Search Frictions, Two-sided Incomplete In-
formation, Diamond's paradox
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1 Introduction

The famous Diamond paradox (Diamond (1971)) implies a complete breakdown of a market
with costly search in which all the bargaining power is given to one party, even when the
search costs are small. But in many markets, both sides have at least some bargaining
power. In this paper, we explore the interaction between asymmetric bargaining power,
costly search and private information in a dynamic matching and bargaining game (DMBG).
We establish an upper e�ciency bound for all equilibria of our model. This bound implies
that market e�ciency can be very low if the bargaining power is su�ciently asymmetric,
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even when frictions are small.1 We prove a simple necessary and su�cient condition for
(no) market breakdown. Furthermore, we show that when the discount rate is small, the
equilibrium is unique and involves full trade.

Our model is a private information replica of Mortensen and Wright (2002; MW here-
after).2 Buyers and sellers arrive continuously to the market, engage in costly search,
are matched pairwise, and bargain under private information. The bargaining protocol is
random-proposal: the buyer makes a �nal o�er with probability �B > 0 and the seller
makes a �nal o�er with the complementary probability �S > 0. The parameters �B; �S
are interpreted as the buyers' and sellers' relative bargaining power. Search frictions are
parameterized by a discount rate r > 0 and explicit search costs incurred at rates �B for
buyers and �S for sellers. The buyers and sellers are heterogeneous in their types (the
valuation of the good for a buyer, or the cost of providing the good for a seller), which are
private information to them.

If one side of the market, say the buyers, is given most of the bargaining power, i.e.
�B is close to 1, then a softer version of the Diamond paradox arises. On the other side
of the market, there is a marginal type of seller who makes zero economic pro�t and is
indi�erent between searching or not. Since search is costly and this seller has only tiny
bargaining power, this seller can break even only when she has a very high �nding rate.
With a constant returns to scale matching technology, this high rate must be supported by
a high market ratio of buyers to sellers. But a high ratio of buyers to sellers in turn implies
that the �nding rate for buyers is very low, so only the most avid ones, if any, will choose
to engage in costly search. The volume of the trading activity is likely to be very low, and
a complete market breakdown is a possibility.

MW have shown this e�ect under complete information bargaining, and in a class of full
trade equilibria, in which every meeting results in trade. Such equilibria sometimes (but
not always) exist. In this paper, we develop a general theory of equilibria in DMBG with
private information bargaining and completely characterize (no) market breakdown.

In our model, a buyer's �nding rate `B (�) is decreasing in the market tightness �, the
ratio of the (stock) masses of buyers and sellers in the market. The seller's �nding rate
`S (�) is increasing in �. Whether or not the market is viable is determined by the incentives
to engage in costly search by some traders from both sides. We show that it occurs if and
only if there is some � such that `B (�)�B > �B and `S (�)�S > �S . This condition is easy
to check because, as we show, one only need to check it at the full trade equilibrium market
tightness �0 = �B�S= (�S�B).

The intuition for our condition is as follows. In order to avoid market breakdown,
positive masses of traders from both sides should participate. Hence the most avid buyers
(with valuation 1) and the most avid sellers (with cost 0) should strictly prefer to enter.
A meeting of such a pair of traders yields the gains from trade equal to 1 (due to our
normalization). Suppose for a moment that the bargaining is under complete information
so that the gains from trade are simply divided according to the distribution of bargaining

1Hosios (1990) showed that search markets are generally ine�cient.
2It is also similar to Shneyerov and Wong (2008) who assume that time is in discrete periods, as in

Satterthwaite and Shneyerov (2007), while MW assume continuous time. MW model is an extension of
Rubinstein and Wolinsky (1985) and Gale (1986), Gale (1987) to general bilateral matching technologies
and continuous type distributions.
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power (�B; �S). Then it is clear that the most avid traders from both sides would strictly
prefer to enter if both `B (�)�B > �B and `S (�)�S > �S are satis�ed. We do not know
what the market tightness � would be, but in equilibrium it is adjusted so that both
inequalities hold, provided that such a � exists. Of course we assume private information
bargaining so that the division of gains from trade is not simply determined by (�B; �S),
but as we show it does not a�ect our existence condition.

The no market breakdown condition has an equivalent form that allows further interpre-
tation. The expected cost of search incurred by a buyer-seller pair until the next meeting,
K (�), depends on � through the expected waiting times of the buyers and sellers. We show
that the maximal surplus of a buyer-seller pair in the market is bounded from above by
1 � K (�0), and the market is viable i� K (�0) < 1. Even when search costs are small,
the market can break down if the bargaining power is su�ciently asymmetric: if, ceteris
paribus, say �B moves closer to 0, then the upper bound 1�K (�0) moves closer to 0, and
a complete market breakdown always occurs for some small �B > 0.

As in Satterthwaite and Shneyerov (2007) (with incomplete information) and MW (with
complete information), equilibria exist in which all matches result in trade. These are full
trade equilibria. We show that, if the discount rate r is su�ciently small relative to the
search cost, the equilibrium is unique and is full-trade. The intuition is the "homogenizing"
e�ect of making r small: the traders become progressively more homogeneous in their
responding decisions. All active buyers will reject o�ers that are more than an epsilon over
the reservation price of the marginal buyer. This provides extremely strong incentives for
sellers to propose that price, which will be accepted by all buyers. Similar logic applies to
the other side of the market.

The literature on DMBG originated with Rubinstein and Wolinsky (1985, 1990), Gale
(1986), Gale (1987) and is by now voluminous. Most of this literature, e.g. Butters (1979),
Rubinstein and Wolinsky (1985, 1990), Wolinsky (1988), De Fraja and Sakovics (2001),
Serrano (2002), Moreno and Wooders (2002), Lauermann (2006a), Lauermann (2006b),
Satterthwaite and Shneyerov (2008), Lauermann (2008), did not consider costly search,
a prerequisite for Diamond-type e�ects that arise in our model. The problem of market
viability that we study doesn't arise there. As a matter of fact, Lauermann (2008) shows
convergence to perfect competition when one side of the market is given all the bargain-
ing power. In that literature, showing existence of a non-trivial equilibrium can only be
mathematically hard.

The literature on costly search, including Satterthwaite and Shneyerov (2007), Shneyerov
and Wong (2008) and Atakan (2008a,b), has focussed on small frictions and convergence
to perfect competition.3 Gale (1987) assumes symmetric bargaining power and does not
address the existence of a non-trivial equilibrium. Satterthwaite and Shneyerov (2007)
consider �rst-price auctions. Shneyerov and Wong (2008) study convergence to perfect
competition of general matching and bargaining mechanisms, including the mechanism
considered here. For �xed �B and �S , Shneyerov and Wong (2008) show that, as the
frictions (�B; �S ; r) ! 0, all equilibria converge to perfect competition, and do so at the
optimal rate. But our analysis in this paper implies that even for small �xed frictions, all
equilibria will be highly ine�cient if the bargaining power is su�ciently asymmetric. The

3Dynamic matching models have also been used to study markets for durable goods, as in Inderst and
M�uller (2002), or to study screening, as in Inderst (2001).
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Diamond e�ect can severely restrict e�ciency of the market even with small frictions.
Atakan (2009) also considers a DMBG with costly search, with a focus on convergence

to perfect competition.4 He proves a general existence result assuming Free First Draw
(FD): the sellers with cost below some small " must enter for at least one period. As in our
method of proof, this assumption forces entry into the market. But we prove that traders
will in fact enter voluntarily i� K (�0) < 1.

We are not aware of a paper that shows existence of a non-trivial equilibrium in a model
with costly search in such a general way as here. In particular, no paper that we know of
goes all the way to showing that a non-trivial equilibrium exists if and only if search costs
are below an explicit threshold, which here is shown to be the same under full and private
information. Shneyerov and Wong (2008) consider a model with auctions, and only prove
a local existence result in the class of full trade equilibria. MW consider a full information
model and prove a global existence result for full trade equilibria. However, even when
full trade equilibria do not exist, non full trade equilibria may exist.5 Also, the proofs of
existence of full trade equilibrium in these papers only use relatively elementary methods
such as the Implicit Function Theorem. In contrast, the proof of our general existence
result relies on a functional �xed point theorem applied to a carefully constructed self-map
of a compact, convex subset of a Banach space.

The structure of the paper is as follows. Section 2 introduces our model. Section 3
states the general existence theorem and gives the main ingredients of its proof. Section 4
explores full trade equilibria. The proofs we do not provide in the text are in the Appendix.

2 The Model

The agents in our model are potential buyers and sellers of a homogeneous, indivisible good.
Each buyer has a unit demand for the good, while each seller has unit supply. All traders
are risk neutral. Potential buyers are heterogeneous in their valuations (or types) v of the
good. Potential sellers are also heterogeneous in their costs (or types) c of providing the
good. For simplicity, we assume v; c 2 [0; 1]. Time is continuous and in�nite horizon. The
instantaneous discount rate is r > 0. The details of the model are as follows:

� Entry: Potential buyers and sellers are continuously born at rates b and s respectively.
The types of new-born buyers are drawn i.i.d. from the c.d.f. F (v) and the types
of new-born sellers are drawn i.i.d. from the c.d.f. G(c). Each trader's type will
not change once it is drawn. Entry (or participation, or being active) is voluntary.
Potential traders decide whether to enter the market once they are born. Those
who do not enter will get zero payo�. Those who enter must incur the search cost
continuously at the rate �B > 0 for buyers and �S > 0 for sellers, until they leave the
market.

� Matching: Active buyers and sellers are randomly and continuously matched pairwise
4Atakan (2008) considers a related model, but with no discounting (so that all equilibria are full-trade),

and characterizes the set of equilibria as the set of solutions to a hypothetical social planner's problem.
5This is shown in the 2008 working paper version of this paper, available at http://artyom239.

googlepages.com/shneyerov_and_wong_bilateral_oct2008.pdf.
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with the instantaneous rate of matching given by a matching functionM(B;S), where
B and S are the masses of active buyers and active sellers currently in the market.

� Bargaining: Once a pair of buyer and seller is matched, they bargain without ob-
serving the type of their partner. The bargaining protocol is random-proposal : with
probability �S 2 (0; 1), the seller makes a take-it-or-leave-it o�er to the buyer, then
the buyer chooses either to accept or reject. And with probability �B = 1� �S , the
buyer proposes and the seller responds. We also assume the market is anonymous,
so that the bargainers do not know their partners' market history, e.g. how long
they have been in the market, what they proposed previously, and what o�ers they
rejected previously.

� If a type v buyer and a type c seller trade at a price p, then they leave the market
with payo� v � p, and p � c respectively. If bargaining between the matched pair
breaks down, both traders can either stay in the market waiting for another match
as if they were never matched, or simply exit and never come back.

We make the following assumptions on the primitives of our model.

Assumption 1 (distributions of in
ow types) The cumulative distributions F (v) and
G(c) of in
ow types have densities f(v) and g(c) on (0; 1), bounded away from 0 and 1:
0 < f � f(v) � �f <1, 0 < g � g (c) � �g <1.

Assumption 2 (matching function) The matching function M is continuous on R2+,
nondecreasing in each argument, exhibits constant returns to scale (i.e. is homogeneous of
degree one), and satis�es M (0; S) =M (B; 0) = 0.

We will restrict attention to steady states. Let � � B=S be a (steady-state) ratio of
buyers to sellers, and de�nem(�) �M(�; 1). Note thatm(�) andm(�)=� are nondecreasing
and nonincreasing respectively in �, and m is continuous on R++. In this notation, the
Poisson arrival rates for buyers and sellers become `B (�) � m (�) =� and `S (�) � m (�) :

Our de�nition of a non-trivial search equilibrium parallels that in MW. Let WB;WS :
[0; 1]! R+ be the search value functions for buyers and sellers, and letNB; NS : [0; 1]! R+
be the (stock) market mass functions, i.e. NB (v) is the mass of buyers in the market with
valuations less than v and NS (c) is the mass of sellers with costs less than c. (In this
notation, B = NB (1) and S = NS (1).) Also let �B; �S : [0; 1] ! f0; 1g be the entry
strategies, i.e. a buyer with valuation v enters i� �B (v) = 1. A new element of equilibrium
in our model with incomplete information is the proposing strategies pB; pS : [0; 1]! [0; 1].

Sequential optimality requires that the values of search in steady state satisfy the fol-
lowing Bellman equations. For a type v buyer,

rWB(v) = max
�2f0;1g

��f`B(�)[�B�B (v)+�S
Z

fc:v�pS(c)�WB(v)g

(v�pS(c)�WB(v))
dNS(c)

S
]��Bg

(1)
where �B (v) is the buyer's capital gain when he becomes a proposer:

�B (v) = max
p2[0;1]

Z
fc:p�c�WS(c)g

(v � p�WB(v))
dNS(c)

S
: (2)
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The buyer's equilibrium entry strategy �B (v) must be an optimal value of � in (1), and his
equilibrium proposing strategy pB (v) must be an optimal value of p in (2). The intuition
for (1) is that, contingent on entry, a buyer's 
ow value of search rWB(v) is equal to the
expected capital gain due to matching a partner, net of the 
ow search cost. Speci�cally,
the buyer's proposed price pB (v) is accepted by the seller if her trade surplus is weakly
greater than the value of search, i.e. if pB(v)�c �WS (c). The seller's proposed price pS (c)
is accepted by the buyer if his trade surplus is weakly greater than his value of search, i.e.
if v � pS(c) � WB(v). When the buyer trades, the capital gain is his trade surplus minus
the value of search. The Bellman equation for the sellers has a similar form:

rWS(c) = max
�2f0;1g

��f`S(�)[�S�S (c)+�B
Z

fv:pB(v)�c�WS(c)g

(pB (v)�c�WS(c))
dNB(v)

B
]��Sg

(3)
where

�S (c) = max
p2[0;1]

Z
fv:v�p�WB(v)g

(p� c�WS (c))
dNB(v)

B
: (4)

An optimal value of � in (3) is the seller's equilibrium entry strategy �S (c), and an optimal
value of p in (4) is her equilibrium proposing strategy pS (c).

6

It is convenient to de�ne the trading probabilities in a given meeting, qB (v) for buyers
and qS (c) for sellers:

qB (v) = �B

Z
fc:pB(v)�c�WS(c)g

dNS(c)

S
+ �S

Z
fc:v�pS(c)�WB(v)g

dNS(c)

S
;

qS (c) = �S

Z
fv:v�pS(c)�WB(v)g

dNB(v)

B
+ �B

Z
fv:pB(v)�c�WS(c)g

dNB (v)

B
:

In steady state, the rate of in
ow of the traders of each type is equal to the rate of the
out
ow due to trading:

b�B (v) dF (v) = `B(�)qB (v) dNB(v); (5)

s�S (c) dG(c) = `S(�)qS (c) dNS(c): (6)

De�nition 1 Parallel to MW, a non-trivial steady-state search equilibrium, or a non-trivial
equilibrium, is de�ned as a tuple (WB;WS ; �B; �S ; pB; pS ; NB; NS) such that B � NB (1) >
0, S � NS (1) > 0, equations (1), (3), (5) and (6) hold, and �B; pB; �S ; pS solve the
optimization problems in (1), (2), (3) and (4) respectively.

The following lemma shows that in equilibrium traders use cuto� entry strategies, and
characterizes the value functions WB and WS .

6In MW, traders observe their partners' types, and fully extract their rents; the proposing strategies are
pB (c) = c+WS (c) and pS (v) = v �WB (v).
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Lemma 1 In any nontrivial steady-state equilibrium, there are marginal entering types
v; �c 2 (0; 1) such that the supports of NB and NS are [v; 1] and [0; �c] respectively. Marginal
entrants (i.e. type v buyers and type �c sellers) are indi�erent between entering or not,
while the entry preferences of all others are strict. fv : �B (v) = 1g is either [v; 1] or (v; 1].
fc : �S (c) = 1g is either [0; �c] or [0; �c). WB is absolutely continuous, convex, strictly increas-
ing on [v; 1], withWB (v) = 0; whenever di�erentiable,W

0
B(v) = �B (v) `BqB (v) = [r + `BqB (v)].

WS is absolutely continuous, convex, strictly decreasing on [0; �c], with WS (�c) = 0; when-
ever di�erentiable, W 0

S(c) = ��S (c) `SqS (c) = [r + `SqS (c)]. The trading probability qB is
strictly positive and nondecreasing on [v; 1], while qS is strictly positive and nonincreasing
on [0; �c].

Proof. In the Appendix.

We call the v and �c in Lemma 1 the marginal buyers' type and marginal sellers' type.
Since the 
ow and stock masses of marginal buyers and marginal sellers (who are indi�erent
between entering or not) are zero, we without loss of generality assume they enter, i.e.
�B (v) = �S (�c) = 1. The following lemma characterizes proposing strategies and gives the
indi�erence conditions for the marginal traders.

Lemma 2 In any non-trivial steady-state equilibrium, the proposing strategies pB(v) and
pS(c) are nondecreasing on [v; 1] and [0; �c] respectively. Moreover, for all v 2 [v; 1], pB (v) <
v � WB (v) and pB (v) 2 [WS (0) ; �c]; for all c 2 [0; �c], pS (c) > c + WS (c) and pS (c) 2
[v; 1�WB (1)]. Furthermore, `B (�)�B�B (v) = �B and `S (�)�S�S (�c) = �S.

Proof. In the Appendix.

The intuition for Lemma 2 is as follows. Consider e.g. buyers. We show that their
proposing strategies are always below what they are willing to accept, i.e. pB (v) < v �
WB (v). Also, they never choose to waste and propose more than acceptable to the marginal
seller, i.e. pB (v) � �c, and they never propose a price so low that it is unacceptable even
to the seller with c = 0, i.e. pB (v) � WS (0). Also, the marginal buyers only make pro�t
from bargaining when they propose. Since WB (v) = 0, they are willing to accept v and in
equilibrium this is commonly known to the sellers. Because v is the lowest type of buyer
active in the market, the sellers would be wasting money proposing less than v. Therefore
`B (�)�B�B (v) = �B.

3 A simple necessary and su�cient condition for no market

breakdown

Since search is costly, there is a possibility that the market completely breaks down (i.e. a
non-trivial equilibrium does not exist) because no trader �nds it worthwhile to enter the
market. We show that whether the market is viable is determined by a simple condition.
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Theorem 1 (No market breakdown) A non-trivial steady-state equilibrium exists if and
only if K (�0) < 1, where

K (�) =
�B
`B (�)

+
�S
`S (�)

;

�0 = (�B�S)=(�S�B):

The function K (�) is the expected search costs incurred by a pair of buyer and seller
when the market tightness is � and there is no discounting. This condition is best under-
stood in an equivalent form given in the following lemma, which also derives a min-max
representation of K (�0) that will be used in the sequel.

Lemma 3 For any matching function satisfying Assumption 2, the following statements
are equivalent. (i) K (�0) < 1. (ii) For some � > 0, we have `B (�)�B > �B and `S (�)�S >
�S.

Proof. Observe that �B=(`B (�)�B) is nondecreasing and �S=(`S (�)�S) nonincreasing in
�; and they are equal if and only if � = �0. Then it is easy to see that

K (�0) = min
�>0

max

�
�B

`B (�)�B
;

�S
`S (�)�S

�
= max

�>0
min

�
�B

`B (�)�B
;

�S
`S (�)�S

�
: (7)

The statement in the lemma follows from the �rst equality.

If `B (�)�B > �B and `S (�)�S > �S , then the most e�cient traders, the buyers with
valuations around 1 and sellers with costs around 0, have a mutual incentive to engage in
search if the other side does so. Given that the trade surplus when they meet is 1, they
will be able to recover their search costs when they propose. This e�ectively "jump starts"
the market. The actual market tightness � will adjust as long as there is some � satisfying
`B (�)�B > �B and `S (�)�S > �S .

Remark 1 Theorem 1 implies that Diamond paradox also holds here: if one side of the
market has almost all the bargaining power, say �B ! 0, then `B (�)�B > �B could hold
only when � ! 0, but then `S (�)�S > �S would be violated since `S (�) ! 0; thus the
market must break down.

The necessity of the condition K (�0) < 1 is established by the following proposition
that also derives an upper e�ciency bound in any equilibrium.

Proposition 1 In any non-trivial steady-state equilibrium, we have

0 < WB (1) +WS (0) < 1�K (�0) :

Proof. From Lemma 1, WB (1) > 0 and WS (0) > 0, proving the �rst inequality. The
marginal type equations in Lemma 2 can be written as

`B (�)�B [v � pB (v)]
Z

fc:pB(v)�c�WS(c)g

dNS(c)

S
= �B; (8)

8



`S(�)�S [pS (�c)� �c]
Z

fv:v�pS(�c)�WB(v)g

dNB(v)

B
= �S : (9)

The equation (8) implies

`B (�)�B [1�WB (1)�WS (0)] > �B;

because 1�WB (1) > v (since v �WB (v) is increasing in v from Lemma 1) and pB (v) �
WS (0) (from Lemma 2). Similarly (9) implies

`S (�)�S [1�WB (1)�WS (0)] > �S :

It follows that

1�WB (1)�WS (0) > max

�
�B

`B (�)�B
;

�S
`S (�)�S

�
� K (�0) :

The last inequality is due to (7) in the proof of Lemma 3. Therefore WB (1) +WS (0) <
1�K (�0).

Remark 2 The bound in Proposition 1 is an upper bound for the ex-ante per capita utility
of the arriving 
ow of buyers and sellers since

1

b+ s
[b

Z 1

0
WB (v) dF (v) + s

Z 1

0
WS (c) dG (c)] � WB (1) +WS (0)

� 1�K (�0) :

From (7), K (�0) = min�>0maxf �B
`B(�)�B

; �S
`S(�)�S

g, and therefore bargaining asymmetries
negatively a�ect the welfare by increasing K (�0) and moving the upper bound 1 � K (�0)
closer to 0.

We now describe the main elements of the proof of the su�ciency part of Theorem
1; additional details are provided in the Appendix. As usual, we want to construct a
mapping T such that its �xed point characterizes an (non-trivial steady-state) equilib-
rium, and prove that T has a �xed point. The mapping T is informally described as
follows. Start with a pair of value functions (WB;WS) and a pair of mass functions
(NB; NS), we construct best-response proposing strategies (pB; pS) and entry strategies
(�B; �S). Then from those strategies and the original functions (WB;WS ; NB; NS), we de-
�ne a new pair of value functions (W �

B;W
�
S) through the Bellman equations, and a new

pair of mass functions (N�
B; N

�
S) through the steady-state equations. Thus a �xed point of

T (i.e. (WB;WS ; NB; NS) = (W
�
B;W

�
S ; N

�
B; N

�
S)) characterizes an equilibrium.

We will utilize the Schauder �xed point theorem: if D is a nonempty compact convex
subset of a Banach space and T is a continuous function from D to D, then T has a �xed
point. In order to make this theorem applicable, certain di�culties need to be overcome.
The main di�culty is that as we apply the mapping T , we need to preserve positive entry.
To deal with this di�culty, we �rst prove existence of what we call an "-equilibrium, which
is an actual equilibrium of the "-model described below.

9



The "-model di�ers from our original model in three ways. First, we ensure that all
buyers with type v � 1� " and all sellers with type c � " enter, even if they would make a
loss. Such losses will be subsidized (or reimbursed) by a third party. Still, we may not have
a positive lower bound for the mass of traders in the market because the out
ow rate (i.e.
`BqB(v) or `SqS(c)) could be potentially very large. We impose the second modi�cation,
which ensures that the arrival rates `B and `S are bounded from above by some �̀. We
replace the matching function M(B;S) with minfM(B;S); B �̀; S �̀g, which clearly satis�es
Assumption 2. This matching function implies `B � �̀ and `S � �̀.

While the �rst two modi�cations are made to make the mass of traders bounded from
below, we also want it to be bounded from above, because our domain D needs to be
compact. It su�ces to have a lower bound for the out
ow rate (`BqB(v) or `SqS(c)). For a
type who enters without subsidy, there is an upper bound for its mass because her expected
trading surplus must be larger than her search cost. More precisely, for a participating v-
buyer who is not subsidized, `BqB(v) � �B. However, a subsidized buyer could have
`BqB(v) < �B. Our third modi�cation is to disqualify subsidized traders in a way that
ensures the out
ow rates of subsidized types are at least �B or �S . The disquali�cation
process is a Poisson process, with the rate equal to the minimum that makes the out
ow
rate at least �B or �S . Thus for any v-buyer, either subsidized or not, the gross out
ow
rate must be max f`BqB(v); �Bg.

In the Appendix, we formally de�ne a mapping T" : D" ! D", (WB;WS ; NB; NS) 7�!
(W �

B;W
�
S ; N

�
B; N

�
S) (on an appropriate domain D") such that its �xed point characterizes

an "-equilibrium; and show that T" has a �xed point E, i.e. T" (E) = E. That is, there
exists an "-equilibrium. In the next proposition, we show that if " > 0 is small and �̀ large,
any "-equilibrium is in fact an equilibrium of our original model.

Proposition 2 Suppose K(�0) < 1. Then if " > 0 is small enough and �̀ large enough,
any �xed point of T" characterizes a non-trivial steady-state equilibrium.

The full proof of Proposition 2 is in the Appendix. Here we outline the basic argument.
In an "-equilibrium, there are two sets of marginal types. Let v be the lowest buyers'
type who would enter without subsidy and let v� be the lowest buyers' type who enters
(v� � 1 � " by construction). De�ne �c and �c� similarly. To claim that an "-equilibrium is
a true equilibrium, it su�ces to show that v� < 1� ", �c� > " and `B < �̀, `S < �̀ .

First we claim that the entry gap v���c� cannot exceed K(�0). A marginal buyer of type
v� cannot have the expected pro�t greater than his search cost. Moreover, such a marginal
buyer can have a positive pro�t only when he proposes, because no seller would propose
less than v�, for the same reason as in the original model. Since the price o�er �c� is surely
accepted, the expected pro�t conditional on matching is at least v� � �c�. Therefore �B �
`B (�)�B (v

� � �c�). Applying the same logic to the sellers, we have �S � `S(�)�S (v
� � �c�).

Therefore

v� � �c� � min
�

�B
`B(�)�B

;
�S

`S(�)�B

�
� K(�0): (10)

The last inequality is due to (7).
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Second, we claim that in "-equilibrium, the in
ows of traders are approximately bal-
anced, i.e. b[1� F (v)] � sG(�c), when " is small. From buyers' steady-state equation,

b[1� F (v�)] =
Z 1

v�
max f`B(�)qB(v); �Bg dNB(v):

(recall that in "-equilibrium, the out
ow rate is max f`B(�)qB(v); �Bg). If no buyer is subsi-
dized, the out
ow (i.e. the right-hand side) is simply the trading out
ow `B(�)

R 1
v qB(v)dNB(v).

Now consider the case in which some buyers are subsidized (which implies v� = 1�"). Using
the inequality dNB(v) � [b �f= (�B)]dv,

0 � b[1� F (v�)]� `B(�)
Z 1

v�
qB(v)dNB(v) � b �f":

The same logic applied to the sellers' side implies

0 � sG(�c�)� `S(�)
Z �c�

0
qS(c)dNS(c) � s�g":

Because the trading out
ows must be balanced, i.e.

`B(�)

Z 1

v�
qB(v)dNB(v) = `S(�)

Z �c�

0
qS(c)dNS(c);

we have
jb[1� F (v�)]� sG(�c�)j � max

�
b �f; s�g

	
� ": (11)

If we let " ! 0, then we have b[1 � F (v�)] � sG(�c�) ! 0 from (11), while v� � �c� is
bounded away from 1 according to K(�0) < 1 and (10). In the limit, we must have the
strict inequalities �c� > 0 and v� < 1. It follows that for all small enough " > 0, we have
�c� > " and v� < 1�". In such an "-equilibrium with small ", no trader is subsidized. Hence
the marginal entrants must be able to recover their search costs. In particular, � is bounded
away from 0 and 1. Thus as long as �̀ are chosen to be large enough, our modi�cation of
the matching function does not have a bite. It follows that we obtain a true equilibrium of
our original model.

The existence part of Theorem 1 now follows from Proposition 1 and Proposition 2. The
necessary and su�cient condition for existence of a non-trivial equilibrium turns out to be
the same in the MW model, which di�ers from ours only in one respect: MW assume full
information bargaining, i.e. bargainers know each other's type. Consequently, proposers
hold their partners to their reservation values. We note that our general existence proof
(Theorem 1) adapts with minor changes. The proof is even easier because we do not have
to consider proposing strategies in our construction of the mapping T .

4 Full trade equilibria

A full trade equilibrium is de�ned as a non-trivial equilibrium in which every meeting results
in trade: qB (v) = qS (c) = 1 for all v 2 [v; 1] and c 2 [0; �c]. The following properties of
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a full trade equilibrium are immediate. First, the supports for active buyers' types and
active sellers' types are separate, i.e. v > �c. This is because otherwise a buyer with v will
not trade if he meets a seller with �c: the seller will not propose or accept anything less
than �c+WS (�c) = �c, while the buyer will only propose or accept something strictly below
v �WB (v) = v. Second, the lowest buyer's (and hence all active buyers') o�er pB (v) is
exactly at the level acceptable to all active sellers, i.e. pB (v) = �c; and similarly, the highest
seller's (and hence all active sellers') o�er pS (�c) is exactly at the level acceptable to all
active buyers: pS (�c) = v. It is easy to see that the converse is also true, i.e. if a non-trivial
equilibrium has the above properties, then it is full-trade.

In a full trade equilibrium, the marginal type equations in Lemma 2 take the following
form:

`B(�)�B (v � �c) = �B; (12)

`S(�)�S (v � �c) = �S : (13)

Noticing that `S(�)=`B(�) = �, (12) and (13) can be easily solved for � and v � �c:

� = �0; (14)

v � �c = K (�0) : (15)

In steady state, the in
ow of active buyers must equal the in
ow of active sellers:

b[1� F (v)] = sG (�c) : (16)

Since v � �c is determined from (15), v and �c are uniquely pinned down by (16). It is easy
to see that there is at most one full trade equilibrium.

Remark 3 A full trade equilibrium, if exists, is uniquely characterized by equations (12),
(13), and (16).

Suppose the existence conditionK (�0) < 1 holds. Then the above system has a solution
with v < 1 and �c > 1. We use subscript "0" to denote the objects of this unique full trade
equilibrium candidate, e.g. (�0; v0; �c0).

7

Although the condition K (�0) < 1 guarantees that a full trade equilibrium candidate
exists, this candidate may not really be an equilibrium, since buyers may have an incentive
to bid lower than �c0, and similarly sellers may have an incentive to bid above v0.

We claim in the following proposition that if the discount rate is small, the equilibrium
is unique and involves full trade. Together with the result in the previous section, it also
implies existence of full trade equilibrium.

Proposition 3 Suppose K (�0) < 1. A r > 0 exists such that for all r 2 (0; r], there is a
unique equilibrium, and it involves full trade.

7Other endogenous variables are easily obtained. In particular, for v 2 [v0; 1] and c 2 [0; �c0], WB0(v) =
`B(�0)

r+`B(�0)
(v � v0), WS0(c) =

`S(�0)

r+`S(�0)
(�c0 � c), NB0(v) =

b[F (v)�F (v0)]
`B(�0)

, NS0(c) =
sG(c)
`S(�0)

.
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Proof. In the Appendix.

The intuition for the uniqueness result is as follows. First, the slopes of reservation
prices v� WB (v) and c +WS (c) become small when r is small (Lemma 1). Thus when
r is small we cannot have v < �c, otherwise we have e.g. pB (1) < 1� WB (1) < �c, which
is impossible to have in equilibrium because the price o�er pB (1) is unacceptable to even
marginal sellers. Second, when v > �c, the demand and supply become very elastic as
r ! 0 and this leads to marginal buyers unwilling to propose below �c and marginal sellers
unwilling to propose above v, i.e. leads to a full trade equilibrium.

Appendix

Proof of Lemma 1. We prove the results for buyers only. We use an argument from
mechanism design. For any v 2 [0; 1], de�ne

tB (v) � �B

Z
fc:pB(v)�c�WS(c)g

pB (v)
dNS(c)

S
+ �S

Z
fc:v�pS(c)�WB(v)g

pS(c)
dNS(c)

S
:

The buyers' Bellman equation (1) implies for any v; v̂ 2 [0; 1] and any � 2 f0; 1g,

rWB (v) � � � f`B [qB (v̂) v � tB (v̂)� qB (v̂)WB (v)]� �Bg

or equivalently WB (v) � � � uB (v; v̂) where

uB (v; v̂) �
`B [qB (v̂) v � tB (v̂)]� �B

r + `BqB (v̂)
:

And the inequality becomes equality if v̂ = v and � = �B (v). Let UB (v)�maxv̂2[0;1] uB (v; v̂).
We then have WB (v) = �B (v)uB (v; v) = �B (v)UB (v) = max fUB (v) ; 0g. For any v̂,
uB (v; v̂) is a�ne and nondecreasing in v. Milgrom and Segal (2002) Envelope Theorem im-
plies UB (v) is absolutely continuous, convex, nondecreasing, and with slope `BqB (v) =(r+
`BqB (v)) whenever di�erentiable. The same properties are inherited by WB (v), except
that its slope becomes �B (v) `BqB (v) =(r + `BqB (v)).

Obviously UB (0) < 0. Let v � sup fv 2 [0; 1] : UB (v) < 0g. By continuity of UB, we
have v > 0 and UB (v) � 0. But UB (v) < 0 is impossible in nontrivial equilibrium because
it implies �B (v) = 0 8v 2 [0; 1] and hence B = 0. Thus UB (v) = WB (v) = 0. By
monotonicity of UB, for all v < v, we have UB (v) < 0 and hence �B (v) = WB (v) = 0.
Moreover, qB (v) > 0 for all v � v. It is because for all v � v, the fact UB (v) � 0 implies
`BqB (v) � �B > 0. It furthermore implies U 0B (v+) � `BqB (v+) =(r + `BqB (v+)) > 0.
Thus for all v > v, we have UB (v) > 0 and hence �B (v) = 1 and WB (v) = UB (v). From
steady-state equation (5), [v; 1] is the support of NB. Since the in
ow distributions F do
not have atom points, neither does NB. Hence B > 0 implies v < 1. Finally, the convexity
of UB implies that qB is nondecreasing on [v; 1].
Proof of Lemma 2. Step 1: Suppose, by way of contradiction, pB(v) > �c for some
v 2 [v; 1]. Then pB(v) is accepted by any active seller (because c+WS (c) is increasing in
c by Lemma 1). A type v buyer can lower his o�er without losing acceptance probability.
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But then pB (v) does not solve the proposing problem in (2). Therefore pB(v) � �c for all
v 2 [v; 1]. Similarly pS (c) � v for all c 2 [0; �c].

Step 2: A buyer with type v cannot get positive bargaining surplus when he is a
responder, i.e. the second term inside the square bracket of (1), evaluated at v = v, is
0. This is because, from step 1, v �WB (v) = v is no higher than pS (c) proposed by any
active seller. Then, since WB(v) = 0 from Lemma 1, the Bellman equation (1) evaluated
at v = v implies `B(�)�B�B (v)� �B = 0. It follows that �B (v) > 0 and hence �B (v) > 0
for all v 2 [v; 1] (because any buyer can choose p = pB (v) in his proposing problem in (2)).
Similarly, we can prove `S (�)�S�S (�c)� �S = 0 and �S (c) > 0 for all c 2 [0; �c].

Step 3: Fix any v 2 [v; 1]. From the inequality �B (v) > 0 proved in step 2, we have
v �WB(v) > pB(v) and pB(v) � c +WS (c) for some c. The last result is equivalent to
pB(v) �WS (0) because c+WS (c) is increasing in c. Similarly we can prove for all c 2 [0; �c],
c+WS (c) < pS (c) � 1�WB (1).

Step 4: Let � (p) be the probability that price p will be accepted by a seller: � (p) �R
fc:p�c�WS(c)g dNS(c)=S . Obviously � is nondecreasing. Then the buyers' proposing prob-

lem in (2) can be written as �B (v) = maxp2[0;1][v�WB (v)�p]� (p). Pick any v1; v2 2 [v; 1],
v2 > v1. Let p1 � pB (v1) and p2 � pB (v2). Revealed preference implies

[v1 �WB (v1)� p1]� (p1) � [v1 �WB (v1)� p2]� (p2) (17)

and
[v2 �WB (v2)� p2]� (p2) � [v2 �WB (v2)� p1]� (p1) :

Sum these two inequalities and then simplify. We obtain

[(v2 �WB (v2))� (v1 �WB (v1))] � [� (p2)� � (p1)] � 0:

Suppose, by the way of contradiction, p2 < p1. Then the above inequality implies � (p2) �
� (p1) and the monotonicity of � implies � (p2) � � (p1). We thus have � (p2) = � (p1) > 0,
where the last inequality is from step 2. Substitute back into (17), we have p2 � p1, a
contradiction.

We need some de�nitions and lemmas to prove the su�ciency part of Theorem 1.

De�nition 2 Let �̀> max f�B; �Sg and " 2 (0;�"], where

�" � minf1;
�f �̀

�Bf
;
�g �̀

�Sg
g:

Let C[0; 1] be the Banach space of real continuous bounded functions de�ned on [0; 1], en-
dowed with the supremum norm. De�ne D" � (C[0; 1])4 as the set of all tuples (WB;WS ; NB; NS)
such that (i) WB, NB and NS are nondecreasing, while WS is nonincreasing, (ii) WB, WS,
NB and NS have Lipschitz constants no greater than �̀=

�
r + �̀

�
, �̀=

�
r + �̀

�
, b �f=�B and

s�g=�S respectively, and (iii) WB (0) = WS (1) = NB (0) = NS (0) = 0 and NB(1) � "bf=�̀,
NS(1) � "sg=�̀.

Lemma 4 The set D" is nonempty, convex and compact for any �̀ > max f�B; �Sg and
any " 2 (0;�"].
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Proof. Obviously, D" is convex and closed. To seeD" is nonempty, letWB (v) =WS (c) = 0
for all v; c, and NB (v) = b �fv=�B, NS = s�gc=�S . Since " � �", we have NB(1) � "bf=�̀ and
NS(1) � "sg=�̀. All other restrictions of D" are obviously satis�ed, thus D" is nonempty.
The set D" is a uniformly bounded family of functions on a compact set [0; 1], and is also
an equicontinuous family of functions because the Lipschitz constant for every function in
D" is at most max

�
1; b �f=�B; s�g=�S

	
. By Ascoli-Arzela Theorem (see e.g. Royden (1988)

p.169), D" is compact.

De�nition 3 The mapping T" : D" ! D", (WB;WS ; NB; NS) 7�! (W �
B;W

�
S ; N

�
B; N

�
S) is

de�ned through the following steps. The best-response proposals are de�ned as

pB (v) � max
(
arg max

p2[0;1]

Z
fc:p�c�WS(c)g

[v � p�WB(v)]dNS(c)=S

)
(18)

pS (c) � min
(
arg max

p2[0;1]

Z
fv:v�p�WB(v)g

[p� c�WS (c)]dNB(v)=B

)
: (19)

The search value functions W �
B and W

�
S are de�ned through rearranged Bellman equations

(1) and (3):

W �
B (v) � max

�2f0;1g
� � f `B

r + `B
(�B�B (v) + �S

Z
fc:v�pS(c)�WB(v)g

[v � pS(c)�WB(v)]
dNS(c)

S
)

� �B
r + `B

g+ `B
r + `B

WB(v); (20)

W �
S(c) � max

�2f0;1g
� � f `S

r + `S
(�S�S (c) + �B

Z
fv:pB(v)�c�WS(c)g

[pB (v)� c�WS(c)]
dNB(v)

B
)

� �S
r + `S

g+ `S
r + `S

WS(c); (21)

where the arrival rates `B and `S are de�ned using the modi�ed matching function: `B =
min

�
M (B;S) ; B �̀; S �̀

	
=B, `S = min

�
M (B;S) ; B �̀; S �̀

	
=S (and B = NB (1), S = NS (1)).

The entry strategies �B (v) and �S (c) are de�ned as the maximizers in (20) and (21) re-
spectively; wherever multiple maximizers exist, we pick � = 1. Finally, the distributions of
active trader types N�

B and N
�
S are de�ned as

N�
B (v) �

Z v

0

��B (x) b

max f`BqB (x) ; �Bg
dF (x) (22)

where ��B (v) is 1 if �B (v) = 1 or v � 1� ", and is 0 otherwise; and

N�
S (c) �

Z c

0

��S (x) s

max f`SqS (x) ; �Sg
dG (x) (23)

where ��S (c) is 1 if �S (c) = 1 or c � ", and is 0 otherwise.
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We now show that the de�nition of T" is legitimate, i.e. it is well-de�ned and T" (D") �
D". Pick any E � (WB;WS ; NB; NS) 2 D". By construction NB (1), NS (1) > 0, so that
`B and `S are well-de�ned. Second, NB (v) and ~v (v) � v �WB (v) are continuous in v;
NS (c) and ~c (c) � c +WS (c) are continuous in c. Third, ~v and ~c are strictly increasing
(since r > 0). It follows that the objective functions in (18) and (19) are continuous in p.
Therefore the argmax correspondence in (18) and (19) are nonempty-valued and compact-
valued. Thus pB and pS are well-de�ned. Now it is obvious that all other constructed
objects, in particular W �

B;W
�
S ; N

�
B; N

�
S , are well-de�ned.

It remains to verify that (W �
B;W

�
S ; N

�
B; N

�
S) 2 D". First, by our constructionW �

B;W
�
S ; N

�
B; N

�
S

are absolutely continuous; and whenever di�erentiable,

W �0
B (v) = �B (v)

`B
r + `B

qB (v)
�
1�W 0

B (v)
�
+

`B
r + `B

W 0
B(v);

W �0
S (c) = ��S (c)

`S
r + `S

qS (c)
�
1 +W 0

S (c)
�
+

`S
r + `S

W 0
S(c);

N�0
B (v) �

��B (v) bf (v)

max f`BqB (v) ; �Bg
; N�0

S (c) �
��S (c) sg (c)

max f`SqS (c) ; �Sg
:

From these derivatives we see (W �
B;W

�
S ; N

�
B; N

�
S) satis�es the conditions (i) and (ii) in

De�nition 3: Second, it is easy to verify that (W �
B;W

�
S ; N

�
B; N

�
S) also satis�es the condition

(iii) in De�nition 3. Therefore (W �
B;W

�
S ; N

�
B; N

�
S) 2 D". We conclude that De�nition 3 of

T" is legitimate.
The following lemma will be used to prove the continuity of T".

Lemma 5 Let f�ng be a sequence of continuous c.d.f.'s with supports contained in [0; 1]
and f ng a sequence of real functions on [0; 1]. Suppose f�ng is uniformly convergent to
some c.d.f. �; f ng is convergent to some real function  almost everywhere on [0; 1]; and
the absolute values and total variations of f ng and  are bounded by some constant C.
Then

lim
n!1

Z 1

0
 n (x) d�n (x) =

Z 1

0
 (x) d� (x) :

Proof. For each n, since  n is of bounded variation and �n is continuous, hence  n is
Riemann integrable with respect to �n (see e.g. Apostol (1974) p.159 Theorem 7.27 and
p.144 Theorem 7.6). Similarly,  is of bounded variation and � (as the uniform limit of a
sequence of continuous functions) is continuous, hence  is Riemann integrable with respect
to �. Moreover,����Z 1

0
 nd�n �

Z 1

0
 d�

���� � ����Z 1

0
 nd�n �

Z 1

0
 nd�

����+ ����Z 1

0
 nd��

Z 1

0
 d�

���� :
The �rst part of the right-hand side can be written, through integration by parts for
Riemann-Stieltjes integrals (see e.g. Apostol (1974) p.144 Theorem 7.6), as

��R [�� �n] d n��
and hence is bounded by C � supx2[0;1] j� (x)� �n (x)j, which converges to 0 as n ! 1,
due to the uniform convergence of f�ng. The second part also converges to 0 as n ! 1,
due to Lebesgue's dominated convergence theorem (see e.g. Apostol (1974) p.270 Theorem
10.27).
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Lemma 6 The mapping T" : D" ! D" is continuous for any �̀> max f�B; �Sg and any
" 2 (0;�"].

Proof. Fix (r; �̀) � (0;max f�B; �Sg) and " 2 (0;�"]. We write the constructed objects in
De�nition 3 as functions of E � (WB;WS ; NB; NS) explicitly, e.g. B (E), `B (E), pB (v;E),
WB (v;E), NB (v;E) etc. We need to show that: for any sequence fEng on D", En ! E
implies T" (En)! T" (E). (Recall that we use the uniform metric on D".)

Step 1. Obviously B (E), S (E), `B (E) and `S (E) are continuous in E.
Step 2. It is easy to see that: I [p � c+WS (c)] (where I [�] is 1 if the condition

inside the bracket holds, and 0 otherwise), as a function of (c; p; E), is continuous on
f(c; p; E) : p 6= c+WS (c)g. Similarly, I [p � v �WB (v)], as a function of (v; p; E), is con-
tinuous on f(v; p; E) : p 6= v �WB (v)g.

Step 3. �̂B (v; p; E) � [v � p�WB (v)]
R 1
0 I [p � c+WS (c)] dNS (c) =S (E) is continu-

ous in (v; p; E). To see this, let (vn; pn; En)! (v; p; E). Then �rstly vn� pn�WBn (vn)!
v�p�WB (v) (note that the convergenceWBn !WB is uniform); from step 2, I [pn � c+WSn (c)]
! I [p � c+WS (c)] except at the c such that p = c +WS (c) (note that there is at most
one such c since r > 0 and E 2 D" imply c + WS (c) is strictly increasing). Applying
Lemma 5, we obtain �̂B (vn; pn; En) ! �̂B (v; p; E). Thus �̂B (v; p; E) is continuous. Sim-
ilarly, �̂S (c; p; E) � [p� c�WS (c)]

R 1
0 I [p � v �WB (v)] dNB (v) =B (E) is continuous in

(c; p; E).
Step 4. From step 3 and Berge's maximum theorem, �B (v;E) (which is equal to

maxp2[0;1] �̂B (v; p; E)) is continuous in (v;E), and PB (v;E) � argmaxp2[0;1] �̂B (v; p; E) is
nonempty-valued, compact-valued, and upper-hemicontinuous in (v;E).

Analogous results can be proved for �S (c; E) and PS (c; E) � argmaxp2[0;1] �̂S (c; p; E).
Step 5. pB (v;E) is continuous on f(v;E) : PB (v;E) is a singletong. To see this, let

(vn; En) ! (v;E) and let pB (vn; En) ! p. Then from step 4, p 2 PB (v;E). Thus,
if p 6= pB (v;E) then PB (v;E) is not a singleton. Moreover, pB (v;E) is continuous on
f(v;E) : v �WB (v) > WS (0)g. An analogous result can be proved for pS .

Step 6. Let E 2 D" and En ! E. Then pB (v;En) ! pB (v;E) a.e. v 2 [0; 1].
To see this, �rst consider v satisfying v �WB (v) < WS (0). Then it is easy to see that
�B (v;En) = 0 = �B (v;E) and PB (v;En) = [0;WSn (0)] = PB (v;E). Thus pB (v;En) !
WS (0) = pB (v;E). Now consider v satisfying v � WB (v) > WS (0). By a standard
revealed preference argument, any selection of PB (�; E) jfv:v�WB(v)>WS(0)g is nondecreasing.
It follows that, for all but countably many v's in fv : v �WB (v) > WS (0)g, PB (v;E) is
a singleton. Then pB (v;En) ! pB (v;E) a.e. from step 5. An analogous result can be
proved for pS .

Step 7. Let E 2 D" and En ! E. Then, from steps 1, 2, 4, 6, and Lemma 5,
W �
B (v;En)!W �

B (v;E) 8v and W �
S (c; En)!W �

S (c; E) 8c.
Step 8. It is easy to see that �B (v;E) is continuous on f(v;E) : `B (E)�B (v;E) 6= �Bg,

where �B (v;E) is the expression inside the square brackets in (20). Furthermore, given
E, there is at most one v such that `B (E)�B (v;E) = �B. To see this, notice that
`B (E)�B (v;E) is nondecreasing in v, and if `B (E)�B (v;E) = �B then `B (E) qB (v;E) �
�B and hence

@
@v [`B (E)�B (v;E)] = `B (E) qB (v;E) [1�W 0

B (v)] �
�Br

r+`B(E)
> 0.

As a result, given any E 2 D", if En ! E then �B (v;En) ! �B (v;E) a.e. v 2 [0; 1].
Obviously ��B has the same property, and analogous results can be proved for �S and �

�
S .
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Step 9. Let E 2 D" and En ! E. Then, from steps 1, 2, 6, and Lemma 5, qB (v;En)!
qB (v;E) a.e. v 2 [0; 1], and qS (c; En) ! qS (c; E) a.e. c 2 [0; 1]. This together with step
8 implies that N�

B (v;En) ! N�
B (v;E) 8v and N�

S (c; En) ! N�
S (c; E) 8c, again due to

Lemma 5.
Step 10. Let E 2 D" and En ! E. From steps 7 and 9, W �

B (�; En), W �
S (�; En),

N�
B (�; En) and N�

S (�; En) converge pointwise toW �
B (�; E),W �

S (�; E), N�
B (�; E) and N�

S (�; E)
respectively. Moreover, the pointwise convergence is equivalent to uniform convergence,
because each of those function sequences form an equicontinuous family of functions on
a compact domain [0; 1] (see e.g. Royden (1988) p.168). We therefore conclude that
T" (En)! T" (E).

Lemma 7 Fix any �̀> max f�B; �Sg and any " 2 (0;�"]. There exists some E 2 D" such
that T"(E) = E.

Proof. As claimed before, D" is a nonempty, convex and compact set in a Banach space
(C[0; 1])4 and the mapping T" is continuous. Then we obtain our result by applying the
Schauder Fixed Point Theorem (which is stated in the text).
Proof of Proposition 2. Suppose E = (WB;WS ; NB; NS) 2 D" is a �xed point of
T". Then E, together with the constructed objects through the transformation from E to
T" (E), constitutes what we call an "-equilibrium. Moreover, an "-equilibrium satis�es all
the equilibrium conditions in De�nition 1 if one can verify that:

(i) The traders that might have been forced into the market in fact enter voluntarily:
v� � inf fv : ��B (v) = 1g < 1� ", and �c� � sup fc : ��S (c) = 1g > ";

(ii) No trader disquali�cation is necessary: `BqB (v) � �B if �
�
B (v) = 1, and `SqS (c) � �S

if ��S (c) = 1;

(iii) Market tightness � does not become too small or too large, so that `B; `S < �̀.

The following steps 1-6 will show that, for any �̀> max f�B; �Sg, any " 2 (0;�"], and
any associated �xed point of T", several equilibrium properties hold. Then steps 7 and 8
will show that (i)-(iii) also hold if " > 0 is small enough and �̀ large enough.

Step 1. E 2 D" implies v �WB (v) and c +WS (c) are strictly increasing. Thus, from
(18) and (21), we have pB (v) � �c� +WS (�c

�) and pS (c) � v� �WB (v
�).

Step 2. The expression inside the curly bracket in (20) can be written as

`B
r + `B

�
�B�B (v) + �S

Z
max fv � pS (c)�WB (v) ; 0g

dNS (c)

S
� �B
`B

�
; (24)

which is continuous in v. Then by the de�nition of v�, � = 0 is a maximizer in (18)
when v = v�. In other words, (24) is non-positive when v = v�. Now evaluate (20) at
v = v�. From the above result and that W �

B = WB, we have WB (v
�) = `B

r+`B
WB (v

�), or
WB (v

�) = 0.
Step 3. The fact that (24) is non-positive when v = v� implies �B�B (v

�) � �B=`B.
Applying similar logic to the sellers, we also have WS (�c

�) = 0 and �S�S (�c
�) � �S=`S .
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Step 4. Notice that �B (v
�) � v� � �c� since the choice variable p in the de�nition (2) of

�B can be taken as �c
�. Similarly �S (�c

�) � v� � �c�. Then step 3 implies

v� � �c� � min
�

�B
`B�B

;
�S
`S�S

�
� K (�0) : (25)

Step 5. The expression inside the curly brackets in (20), which can be written as (24),
is increasing in v. A single-crossing argument implies that �B and ��B are increasing.
Therefore, if v � v, then (24) is non-negative, which implies `BqB (v) � �B. Similarly, �S
and ��S are decreasing, and for any c � �c � sup fc : �S (c) = 1g, we have `SqS (c) � �S .

Step 6. Equation (22), N�
B = NB, and step 5 imply

b [1� F (v�)]�
Z 1

v�
`BqB (v) dNB (v) =

Z 1

v�
max f0; �B � `BqB (v)g dNB (v) : (26)

The r.h.s. of (26) is clearly non-negative. Moreover, it is also no greater than b �f". To see
this, consider two (exhaustive) cases: v� = v and v� < v. First consider the case v� = v.
From step 5 the r.h.s. of (26) is 0. Next, consider the case v� < v. From the de�nitions of

v� and v, we have v� = 1�": The r.h.s. of (26) is no greater than b �f" because N 0
B (v) �

b �f
�B
.

Similar logic can be applied to the sellers' side. Therefore we obtain

0 � b [1� F (v�)]�
Z 1

v�
`BqB (v) dNB (v) � b �f"

0 � sG (�c�)�
Z �c�

0
`SqS (c) dNS (c) � s�g":

On the other hand, by de�nition of `B; qB; `S ; qS , we haveZ 1

v�
`BqB(v)dNB(v) =

Z �c�

0
`SqS(c)dNS(c):

Therefore,
jb[1� F (v�)]� sG(�c�)j � max

�
b �f; s�g

	
� ": (27)

Step 7. The previous six steps work with a particular �xed point of T" given
�
"; �̀
�
. In

this and the next step, we let
�
"; �̀
�
! (0;1) and consider an associated sequence of �xed

points. Along any subsequence, �c� cannot approach 0 because otherwise (27) implies v� ! 1
and hence v���c� ! 1, violating (25) and K(�0) < 1. Similarly, v

� cannot approach 1 along
any subsequence. Therefore, in the tail of the sequence, we have �c� > " and v� < 1� ", i.e.
(i) holds. Notice that (i) implies v� = v and �c� = �c. Thus step 5 implies (ii) also holds in
the tail.

Step 8. From steps 5 and 7, we have `B (�) � �B and `S (�) � �S in the tail as�
"; �̀
�
! (0;1). Thus � � B=S is bounded away from 0 and 1. It follows that, in the tail,

`B; `S < �̀, i.e. (iii) holds.
The su�ciency part of Theorem 1 follows from Lemma 7 and Proposition 2.
The proof of our uniqueness result (Proposition 3) is expedited by the following lemma

that bounds from below the entry gap v � �c.
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Lemma 8 In any non-trivial steady-state equilibrium, we have

v � �c � �� r
r + �

[1�WB (1)�WS (0)] : (28)

where � � min f�B; �Sg.

Proof. Since qB is nondecreasing (from Lemma 1),

qB(v) � qB (v) � �B

Z
fc:pB(v)�c�WS(c)g

dNS (c)

S

for any v � v. Next, we must have v > pB (v) �WS (0) from Lemma 2. The �rst inequality
is from Lemma 2. The second inequality is from the proof of Lemma 1. Then from the
buyers' marginal type equation (in Lemma 2), we obtain `BqB(v) [v �WS (0)] � �B 8v � v.
From Lemma 1, we have

d

dv
[v �WB (v)] =

r

r + `BqB(v)
� r

r + �B=(v �WS (0))
:

Hence

1�WB (1)� v =
Z 1

v

d

dv
[v �WB (v)] dv �

r

r + �B=(v �WS (0))
;

1�WB (1)� v
v �WS (0)

� r

(v �WS (0))r + �B
<

r

�B
:

The last inequality is due to v > pB (v) and r > 0. Rearranging, we get

1�WB (1)� v
1�WB (1)�WS (0)

<
r

r + �B
� r

r + �
: (29)

Repeating the previous arguments with the roles of buyers and sellers interchanged, we get

�c�WS (0)

1�WB (1)�WS (0)
<

r

r + �
: (30)

Summing up (29) and (30) and rearranging terms yield the desired inequality.
Proof of Proposition 3. We have already noted (in Remark 3) that there cannot be
more than one full trade equilibrium. It su�ces to prove that, if r is small, then in any
(non-trivial steady-state) equilibrium, pB (v) = �c 8v � v and pS (c) = v 8c � �c. We will
only consider r < � � minf�B; �Sg, which through Lemma 1 implies v > �c in equilibrium.
Now pick any equilibrium and focus on sellers. Since pS is nondecreasing on [0; �c] and
pS (c) � v 8c � �c (from Lemma 2), the condition pS (c) = v 8c � �c is reduced to pS (�c) = v,
or equivalently p = v is the only maximizer of maxp2[0;1] �̂S (�c; p), where

�̂S (�c; p) = (p� �c)
Z 1

v
I [p � v �WB (v)]

dNB(v)

B
:

Since �̂S (�c; p) is absolutely continuous in p, it is di�erentiable in p almost everywhere.
Notice that @�̂S (�c; p) =@p is 1 if p < v, so that any p < v is never optimal. Proposing
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p > 1 �WB (1), which implies �̂S (�c; p) = 0, is also never optimal. If v < p < 1 �WB (1),
whenever di�erentiable, we have

@�S (�c; p)

@p
= 1� ~� (p)� (p� �c) ~� (p) ; (31)

where ~� (p) �
R 1
v I [p � v �WB (v)] dNB(v)=B and ~� (p) � ~�0 (p). De�ne ~v (v) � v�WB (v)

and � (x) � N 0
B (x) =B. The function ~v is strictly increasing since r > 0 (from Lemma 1), so

that its inverse function ~v�1 is well-de�ned on the range of ~v, and is also strictly increasing.
Then

~� (p) =
�
�
~v�1 (p)

�
~v0 (~v�1 (p))

8p 2 [v; 1�WB (1)] :

We want to show that, when v < p < 1�WB (1) the r.h.s. of (31) must be negative for
all su�ciently small r > 0. From r < �, Lemma 8 and 1, we obtain

p� �c > v � �c � K (�0)

�
�� r
r + �

�
> 0: (32)

Moreover, for all v � v, we have ~v0 (v) = r
r+`BqB(v)

(from Lemma 1) and `BqB (v) � �B
(from Lemma 2). Thus ~v0 (v) � r= (r + �), and hence

~� (p) �
�
1 +

�

r

�
�
�
~v�1 (p)

�
: (33)

We now derive a lower bound for the market probability density of buyers' types �.
From the steady-state condition (5),

� (v) =
bf (v)

M (B;S) qB (v)
�

bf

M (B;S)
8v � v (34)

and

B =

Z 1

v

bf (v) dv

`BqB (v)
<

b

�B
� �B:

Similarly (6) implies

S <
s

�S
� �S:

Since M (B;S) is nondecreasing in each of its arguments, M (B;S) � M
�
�B; �S

�
. Substi-

tuting this bound into (34) we obtain

� (v) �
bf

M
�
�B; �S

� � � 8v � v: (35)

Applying (32), (33) and (35) to (31), and simplifying, we �nd that for almost all p 2
[v; 1�WB (1)],

@�S (�c; p)

@p
< 1�K (�0)

��
r
� 1
�
�:
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Similarly, pB (v) 2 [WS (0) ; �c], and for almost all p 2 [WS (0) ; �c], we have

@�B (v; p)

@p
> �1 +K (�0)

��
r
� 1
�



where

�B (v; p) � (v � p)
Z �c

0
I[p � c+WS (c)]

dNS(c)

S
;


 �
sg

M
�
�B; �S

� :
Therefore, if 1�K (�0)

�
�
r � 1

�
� � 0 and �1 +K (�0)

�
�
r � 1

�

 � 0, or equivalently r � r

where

r � � �
K (�0)min

�
�; 


	
1 +K (�0)min

�
�; 


	 ; (36)

we have r < �, @�S (�c; p) =@p < 0 for almost every p 2 (v; 1�WB (1)) and @�B (v; p) =@p >
0 for almost every p 2 (WS (0) ; �c). Hence pS (�c) = v and pB (v) = �c.
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